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Abstract

The goal of the project was to aid ongoing large scale genetic studies of Amyotrophic lateral sclerosis (ALS) by
improving on its population stratification control method. Since genetic differences between population groups confound
the statistical methods, it is necessary to control for population stratification. The standard way to do this involves
applying principle components analysis (PCA) to common genetic variants. However, in ALS the relevant genetic
variants are rare, creating a need for methods that can robustly evaluate population stucture among rare variants.
A good candidate is Jaccard principal component analysis (jPCA), a particular case of kernel principal component
analysis.

I developed a set of scripts capable of running jPCA on very large datasets (through parallelization) and another one
allowing for arbitrary positive integers burden values - thus working not only on genotype data but also on gene-burden
data. My implementation of jPCA was tested by checking that its output is identical to the output of another, less
general implementation of jPCA when applied to the 1000 genomes project data [1].

Applying jPCA on ALS exome data led to surprising results: although jPCA captures population stratification on
the 1000 genomes data [1], it does not capture the sample ancestry structure in a clear way when applied to the exome
data explored here, whether we use common or rare variants. The problem seems to lie either on the specific distribution
of the exome variants or the data collection limitations. Exactly how this happens is left as an open question for future
work.

1 Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenera-
tive disease mostly affecting motor neurons, causing pro-
gressive weakness of voluntary muscles and eventually death
by respiratory arrest [2]. Its cumulative lifetime risk is ap-
proximately 1

300 .
It is of obvious importance to identify what genes1are

associated with ALS. Nowadays it is possible to sequence
the entire genome, and use statistical methods to ana-
lyze the data in so-called genome wide association studies
(GWAS) and gene burden analyses (see §1.2). The distri-
bution of disrupting variants can be compared to popula-
tion controls to identify genes with an excess of potentially
pathogenic variants in sick patients. But these datasets
are enormous, and the results may be prone to misin-
terpretation: so many sequences can be considered that
by chance alone one could find a certain sequence over-
represented in sick patients. Auxiliary genetic information
can help reducing the search space, e.g. one may priori-
tize variants with higher predicted pathogenicity based for
example on alterations of the encoded proteins. Further-

1For the reader unfamiliar with biology lingo, there is a glossary
in §5.2 with some of the most important terms used in this text.

more, mutations of the non-exome part of the genome are
even harder to interpret since we don’t understand many
of its functions. For these reasons, and for its lower cost
(and thus higher availability), we use exome sequencing
data.

Some problems arise specifically in a ALS GWAS be-
cause the variants contributing to risk are rare variants.
This complicates matters for a few reasons [2]:

1. When the disease-causing mutations are rare one
needs more data to ensure that each mutation is
present in enough number to do statistics.

2. Rare variants may be population-specific, making
replication difficult.

3. The non-presence of rare possibly pathogenic vari-
ants in patients does not mean that we can discard
it - after all, it is rare.

4. Rare variants may have different distributions than
common variants [3], rendering useless some meth-
ods usually applied to common variants.

Some possible solutions are [2]:
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1. Use extremely large datasets from global efforts like
Project MinE, which is the largest genetic study for
Amyotrophic Lateral Sclerosis.

2. Support the results with biochemical functional anal-
ysis.

3. Use gene-burdens (see § 1.1): lower resolution data
may identify pathogenic genes, even if sacrificing a
nucleotide-scale view of the data.

Let us briefly discuss the type of data we are dealing
with and identify the problem to solve.

1.1 The genotype matrix and gene-burdens

A gene can be seen as a sequence of nucleotides from {A,
T, G, C}. Each person has two copies of each gene, one
from the mother and one from the father.

from mother: A T T G A C C . . .
from father: A A T G G C C . . .

Single nucleotide polymorphisms (SNPs) are positions
in the genome where there are variations within the sam-
pled population.

person 1: G T C A A C C
person 2: G T A A A G C
person 3: G T C A A G C
person 4: G T C A A C C

A SNP has at least two alleles, but can have up to
four: one for each distinct nucleotide. The variant with
the highest frequency in the population is called the major
allele. All other variants are minor alleles.

For the individual i and SNP j, the genotype value (or
SNP-burden) bi,j is:

bi,j =


0, no minor alleles at j on father and mother genes.

1, a minor allele at j on one of the parents’ genes.

2, minor alleles at j on the genes of both parents.

the matrix [bi,j ] is called the genotype matrix.
As discussed in §1, when dealing with rare variants

one may want to consider gene-burdens, which are simply
sums of the SNP-burdens in a gene.

1.2 GWAS and controlling for population
stratification

In a genome-wide association study (GWAS), one tries
to assess the pathogenicity of the SNP variants w.r.t. a
certain disease, using all the SNPs of the genome.

In the language of statistics, the predictors are the
genotype values b·,j and the response is a “is sick?” boolean,
called the phenotype.

Since the number of SNPs in the human population is
enormous, very large quantities of data are needed, usu-
ally from individuals around the world. This is true even

when one restricts oneself to the exome, which is only
about 1% of the human genome, as we do. In such a
scenario, one cannot simply run a classification model -
say, multivariate logistic regression - and expect good re-
sults: the ancestry differences between individuals, which
are highly correlated with their geographical differences,
is a confounding variable that we must account for. In-
deed, correcting for population stratification is now com-
mon practice in GWASs.

In [4], it is shown that the first two principal com-
ponents of the data obtained from principal component
analysis (PCA) on genotype data from the 1000 genome
project (OTGP) are highly correlated with geographical
axes. This means that one can use the principal compo-
nents of a population’s genotype data to control for ances-
tral differences - whose effect on the population genome is
known as population stratification - by simply taking those
principal components as covariates in whatever classifica-
tion model we choose to use.

1.3 The GWAS pipeline

Given what we said above, the pipeline for a GWAS can
be separated in four parts: The input data; a method for
stratification control (e.g. PCA); a supervised classifica-
tion model (e.g. logistic regression); and some methods
for analysing the resulting p-values (e.g. manhattan plots
and qqplots, which we will not describe here).

PCA Logistic Regression
Genotype matrix

Boolean labels
+

Manhattan plots

qqplots
+

Input data
Strati�cation

   control
Supervised learning

       method
p-value analysis

Each of these parts can be modified. In this work, we
only tinker with the first two:

• Instead of a genotype matrix, my supervisor pro-
posed the use of a matrix of gene-burdens (see §2)
for the reasons stated in §1. Thus I tested my meth-
ods on both genotype and gene-burden data.

• Instead of using PCA to summarise variance across
genetic variants, one must use methods better suited
for rare variants. As we will see shortly, I ended
up using two types of so-called jaccard PCA, which
effectively ignores the nucleotides with no mutations
(see §2.2).

2 Data and methods

As explained in §1, I tested my methods to capture popu-
lation structure in both exome genotype and gene-burden
data. The gene-burden matrix was obtained from the
genotype data by adding the SNP-burdens of each gene,
obtaining as many rows as there are genes in the human
exome. Instead of this matrix, I used filtered versions of
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it, containing only mutations that affect the protein en-
codings.

Concretely, this data is divided in three datasets:

1. Genotype data from the MinE dataset, correspond-
ing to 1343816 exome and non-exome SNPs from
30820 individuals, approximately 23% of which are
ALS patients (phenotype = 1). For the parts where
we only wanted rare variants we extracted them
from the genotype matrix.

2. The LOF dataset: a gene-burden matrix with 12802
exome genes from 30820 individuals. This dataset
was constructed by computing gene-burden values
from the MinE dataset. It only takes into account
rare and severe mutations that are known to cause
a loss of function of the encoded protein. Also, this
data has been mean-imputated2.

3. The moderate dataset: a gene-burden matrix with
17881 exome genes from 30820 individuals. This
dataset was constructed by computing gene-burden
values from the MinE dataset. It takes into account
moderate (mostly missense) rare mutations. Like
LOF, this data has been mean-imputated.

2.1 Alternatives to PCA

PCA selects the directions for which the variance is max-
imized. Those directions are called the principal compo-
nents (PCs) of the data.

The PCA algorithm always gives us the (orthogonal)
PCs of the data, but they are not always meaningful or
useful.

PCA is useful when the PCs include most or all of the
interesting information in the data. More precisely, this
means that the PCA captures enough of the population
structure for our purposes.

For PCA to be useful, the following must be true: [5]

1. Linearity: expressing the data in terms of the PCs
corresponds to a change of basis.

2. PCs are orthogonal: this helps with the linear alge-
bra problem of finding the PCs.

3. Directions of largest variance are the important3ones.
This means that signal to noise ratio is high - direc-
tions with lower variance correspond to noise.

Remark: The first and second assumptions are auto-
matically satisfied for (multivariate) normal distribution
of the data, and the third assumption is usually true for
not-too-noisy data. So this justifies the common claim
that PCA works for Gaussian data.

2Missing values were replaced with the average of their columns.
3In the current context of controlling for population stratifica-

tion, “important directions” are the ones which capture the ancestry
differences.

Figure 1: Examples of when PCA fails; taken from [5].
The red arrows represent the two first PCs. A: circular
data violates the linearity assumption; the angle θ (from
polar coordinates) would be a much better coordinate to
use as PC than the PCs from PCA. B: Non-orthogonal
PCs - PCA cannot recognize that the PCs are not orthog-
onal, since it only seaches for othogonal PCs.

Given the good results in [4] (mentioned in §1.2), it
seems that the three assumptions above are at least ap-
proximately satisfied. But there was no ‘a priori’ reason
to think that this would be the case. For instance, the
genotype data is clearly not Gaussian distributed, but Bi-
nomially distributed4.

When dealing with rare variants only, things get worse:
it was shown in [3] that, if the genotype data uses rarer al-
leles, then: the ratio inter-population-variance

intra-population-variance diminishes; the
distance between populations decreases; and the variance
explained by the first PCs also decreases.

Thus, it is clear that we must find an alternative to
PCA that is appropriate for sparse rare variant data, as
opposed to the non-sparse common variant level genetic
relatedness that we usually assess.

Possible alternatives

One may start exploring PCA alternatives that fit our
needs with the question: how to extract the population
stratification in the OTGP data with rare variants only?
The answer may suggest methods to use in our own rare
variant data.

Fortunately this was already answered in [6]. Two
methods stand out: Logistic PCA (LPCA) and Jaccard
PCA (jPCA), with LPCA giving slightly better results.

LPCA rests on the assumption that the data follows
a binomial distribution. At the start of this project the
main goal was to control for population stratification in
the gene-burden version of the data, which is not bino-
mially distributed. Therefore I decided to explore jPCA,
and apply it both to the gene-burden and the genotype
versions of the data.

4The other type of data that we use (gene-burdens) has all the
same issues. In particular, it is straightforward to check that the
distribution of the gene-burden values is not Gaussian (it is a zero
inflated negative binomial distribution).
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2.2 Jaccard (Kernel) PCA

Before discussing jPCA one must introduce the Jaccard
index.

Jaccard index

Given two genotype vectors (two rows of a genotype ma-
trix) a and b, their Jaccard index j(a, b) is schematically
given by

j(a, b) =
|(a>0 ∩ b>0)|
|(a>0 ∪ b>0)|

(1)

where |(a>0 ∩ b>0)| is the number of SNPs where a and
b have equal, non-zero genotype values, and |(a>0 ∪ b>0)|
is the number of SNPs where either a or b (or both) have
non-zero genotype values.

The motivation for defining such an index is the follow-
ing: when comparing two genotype vectors, a first naive
idea is to define their similarity index as the ratio of en-
tries on which they agree. Then, a = (0, 0, 0, 1, 0) and
b = (2, 0, 0, 0, 0) would have a similarity index of 3

5 since
neither has mutations on the second, third and fifth nu-
cleotides.

One can see how this reasoning can go terribly wrong
when dealing with rare mutations. In fact, one may get
vectors a and b with zeros in thousands of entries, and
just a couple of non-zero values in different SNPs. Then,
the naive similarity index will be extremely high - which
for our purposes is nonsensical: a and b should be consid-
ered identical only when they have mutations in the same
SNPs. The Jaccard index takes this into account by only
considering the entries with positive values.

The Jaccard matrix is the similarity matrix

J := [j(ak, al)]k,l∈{1...n} (2)

where n is the number of samples/individuals.
Notice that we defined the Jaccard index in a way that

generalizes easily to gene-burdens, since nothing stops the
vectors’ entries from having values larger than 2. This
contrasts with e.g. [1], where the author only accounts for
burden values in {0, 1}. When clarification is necessary, I
will refer to (1) as the generalized Jaccard index.

Kernel PCA

jPCA is sometimes described as “applying PCA on the
Jaccard matrix” but this is slightly misleading (see §5).
Actually, it is a particular type of the so-called Kernel
PCA, which we introduce now.

Kernel PCA (kPCA) is a non-linear dimensionality re-
duction method where the data is non-linearly mapped to
a higher-dimensional space (feature space) where PCA is
finally applied [7][8]. It can be especially useful when try-
ing to separate data that is not separable using standard
PCA.

PCA

PC1

PC2

Figure 2: Scheme of kPCA applied to a dataset of con-
centric circles.

To illustrate kPCA, consider5a dataset consisting of
two concentric circles (plus noise) - see figure 2. Clearly,
PCA would approximately give the original axes as the
first two principal components. Hence, because of the
non-linearity of the data, PCA is incapable of capturing
its structure.

Instead, we can apply a non-linear map φ : R2 → R3

given by φ(x, y) = (x, y, x2 +y2). This captures the struc-
ture of the data in the third dimension: the smaller dots
from the inner circle will be separated from the bigger dots
from the outer circle along the third dimension, since it
measures the square of the distance of the original points
to the origin.

PCA can now handle the new data and separate the
two clusters along one of the first principal components.
When applying PCA on a dataset X, one obtains the PCs
from XtX: they are the eigenvectors of XtX. So in our
case one must find the eigenvectors of φ(X)tφ(X): they
are the kPCA PCs.

But this computation can be expensive. If we instead
find a function k : R2×R2 → R such that6∀x, y, k(x, y) =
φ(x)tφ(y), then φ(X)tφ(X) = [k(xi, xj)]i,j=1,...,n =: K,
where n is the number of samples in the dataset. Hence
the kPCA PCs are the eigenvectors of K, and if we have
K from the start we never have to deal with the non-linear
function φ.

Such a function k is called a kernel and is often thought

5This example is similar to the one given in the excellent video
lecture on kPCA by David R. Thompson, from Caltech.

6In other words, k acts as a dot product in R3.
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of as a similarity function. The matrix K is sometimes
called the Gram matrix.

In practice, one rarely chooses an explicit form of φ,
and instead deals with kernels from the start. One must
be careful when choosing a function as a kernel: we cannot
just use any function - it must be one for which a φ exists
such that ∀x, y, k(x, y) = φ(x)tφ(y). Fortunately, one can
be sure that a certain function k is a kernel if it is “positive
definite” as discussed in [9].

The next natural question is then: what kernel should
we choose for the genotype and gene-burden datasets?

Jaccard PCA (jPCA) is the particular kPCA method
for which the kernel k is taken to be the Jaccard index j
[1]. We have seen that j is indeed an appropriate measure
of similarity between genotype and gene-burden vectors
when dealing with rare mutations. Using j as the kernel
should effectively help separate samples with different mu-
tations in the feature space even if their genotype/gene-
burden vectors coincide in most non-mutated entries. This
may help PCA better capture the genetic variation be-
tween samples when considering only rare variants. Sim-
ilar to what happened with regular PCA and common
variants data, we expect that genetic variation to be a
proxy for population stratification. Furthermore, it turns
out that the Jaccard index is positive definite [9], meaning
that we can indeed use it as a kernel.

3 Results

I ran my own implementation of jPCA on the datasets
described in §2, and tested it on the OTGP data as a
control, comparing the results with [1].

3.1 jPCA on the 1000 Genomes Project
data

In [1], jPCA was successfully applied to the OTGP data
to extract population structure, obtaining better results
than PCA when applied to rare variants. That paper uses
an open-source R library called jacpop, which computes
the jPCA principal components from a genotype matrix
using the function generate pw jaccard.

Unfortunately, this library was unfit for this work, be-
cause:

1. The MinE dataset is too large to be fed to gener-
ate pw jaccard. So one needs a flexible script that
one can parallelize.

2. generate pw jaccard uses the standard Jaccard in-
dex, not the generalized Jaccard index, and is thus
unfit for gene-burden data (the LOF and moderate
datasets).

So I created a collection of Python scripts that general-
ized jacpop for genotype data by allowing parallelization,
and another collection of Python scripts that generalized

jacpop for gene-burden data by allowing burdens of arbi-
trary positive value. Clearly, the former should still give
the same results as jacpop in the OTGP data, so I used
both methods using 5e5 randomly chosen variants and
verified that they output identical plots (see figure 3).

3.2 Gene burdens

For this part I used the moderate data.
The plots obtained by applying jPCA to the gene-

burden data show a highly irregular pattern that does
not seem to correlate with sample ancestry: in contrast
with the results in [1] and [6], the first two PCs do not
show a clear separation between the different populations
(figure 4).

Another surprising result is that the jPCA PCs do
not correlate at all with the PCs from PCA applied to
the genotype data. Since the latter already capture the
population structure fairly well, this indicates that jPCA
may not be not able to do the same using the gene-burden,
rare variants exome data. However, this can also be a
symptom of some problems/biases in the quality of the
sequencing data. This warrants further investigation in
the future.

We may also be interested in knowing if the PCs sep-
arate sick and healthy people. They don’t: there’s no vis-
ible separation (see figure7 5) and, more rigorously, run-
ning logistic regression resulted in very large p-values, and
the model simply predicted 0 every time (thus having an
accuracy of number of healthy individuals

number of individuals = 77% and null F1-
statistic).

This contrasts with results coming from the use of PCs
from conventional PCA: in that case the first 5 PCs are
significant (with nearly null p-values) and the F1-statistic
is nonzero (albeit still unsatisfactory with a value of 0.02).

3.3 Genotype values - rare variants

We now apply jPCA on the MinE genotype data, includ-
ing only the rare variants.

The results still show no clear separation between co-
horts (figures 6 and 7). Furthermore, logistic regression
(with the phenotype as the response variable) gives sim-
ilar results to the gene-burden case, and again the jPCA
PCs do not correlate with the standard PCs.

3.4 Genotype values - common variants

Next we applied jPCA on the MinE genotype data, now
using exclusively the common variants.

The first two PCs separate the data in two (see fig-
ures 8 and 9). Contrary to our expectations, these two
clusters do not have an obvious association with the co-
hort labels.

7You may notice that the two plots from figures 4 and 5 are
slightly different. This is because in the first plot I removed the
points whose cohort label was “nan”.
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(a) Plot from generate pw jaccard using 5e5 variants from the
OTGP data.

(b) Plot from my (parallelized) jPCA script using 5e5 variants
from the OTGP data.

Figure 3: Comparison between plots generated by gener-
ate pw jaccard and by my script when applied to OTGP
data.

Figure 4: First two jPCA PCs in the Gene-burden data,
labelled by cohort.

Figure 5: First two jPCA PCs in the Gene-burden data,
labelled by phenotype.
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Figure 6: First two jPCA PCs in the genotype data, la-
belled by cohort.

Logistic regression with phenotype as the response vari-
able gives similar results to the gene burden case, and
again the jPCA PCs do not correlate with the standard
PCs.

The natural question to ask is: why does jPCA capture
the population structure in the OTGP data (whether we
use rare or common variants [1]) but not in the genotype
data that we are using (whether we use rare or common
variants)?

To understand this, one may start by looking at the
differences between these datasets: although they both
consist of genotype data, the OTGP data contains the
SNPs of the entire genome of the population, while the
MinE data only contains the exome SNPs. Furthermore,
while the MinE data that we are using is an amalga-
mation of data from different countries and laboratories,
the OTGP data comes from a single source sequencing
project, meaning that the MinE data is a lot less uniform
than the OTGP data. This can throw off the results. For
example, the two clusters in figure 8 may very well be an
artifact of mean-imputation (see the appendix §5), simi-
lar to what happens in §5.1. This is clear by comparing
figures 10 and 12a in light of the discussion in §5.1.

From these results alone it is not possible to conclude
which of these explains the unusual and as of yet unex-
plained structure seen with jPCA.

4 Conclusion

The first two PCs resulting from applying jPCA on mod-
erate (gene-burden) data do not capture the population

Figure 7: First two jPCA PCs in the genotype data, la-
belled by phenotype.

Figure 8: First two jPCA PCs in the genotype data, la-
belled by cohort.
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Figure 9: First two jPCA PCs in the genotype data, la-
belled by phenotype.

Figure 10: Heatmap for Jaccard scores from the genotype
data - common variants.

structure. The same happens on the rare variants of the
MinE genotype data, possibly because by using all rare
variants one includes extremely rare variants occurring on
only one or two individuals each, which can throw off the
selection of PCs. Hence further filtration of the data could
solve this, for example by removing rare variants that ac-
tually result from errors made by DNA sequencing ma-
chines.

The true mystery is the fact that jPCA does not cap-
ture population structure in the MinE genotype data us-
ing the common variants. Here, such filtration problems
are inexistent, and there seems to be no good reason for
the results observed, given that jPCA does capture said
structure when applied to the OTGP data [1][6].

The issue must come from the technical differences
between the MinE genotype data and the OTGP data,
namely: the MinE data we used contains exome-sequencing
only, which may have a different distribution than the
genome-sequencing data; the OTGP data is more uniform
- the MinE data comes from dozens of different projects,
and for example the imputation methods that were used
to cope with the missing data may create spurious issues.

One way to pinpoint the peculiarities of the MinE
dataset responsible for these results would be to apply
jPCA to the entire genotype data (not just the exome).
Furthermore, it could be instructive to investigate the ori-
gins of the two clusters on figure 8. It may also be inter-
esting to re-run jPCA on the rare-variants, genotype data
after filtering out the extremely rare mutations. Finally,
the arguments that I have seen so far in favour of using the
Jaccard index as a kernel are not completely convincing.
Thus one could explore in detail the geometrical implica-
tions of using this kernel, and see if it indeed makes it
so that the data in feature space is primed for the use of
PCA. These are left for future work, since my internship
has come to an end.

5 Appendix

5.1 PCA on Jaccard values

In [6] and [1], the authors describe jPCA as applying PCA
on the similarity matrix created using the so-called Jac-
card index as the similarity value. This is not exactly
what jPCA is, as discussed in the main text. But their
abuse of terminology suggested a different approach: why
not try PCA on the Jaccard values themselves? After
all, the gene-burden data may be approximately Gaus-
sian distributed: each gene-burden is the sum of a large
number of genotype values (each binomially distributed),
and there may be enough consistency between binomial
distributions and genes that the central limit theorem sug-
gests an approximate Gaussianity. It was a long shot, but
it was worth a try.

One important lesson came from this exploration: how
rounding mean-inputed data can give spurious results. I
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(a) Heatmap for Jaccard scores using 200 individuals.

(b) Histogram for Jaccard scores using 200 individuals.

Figure 11: Jaccard scores for the LOF data, using 200
individuals.

will illustrate this with the problems that appeared when
applying PCA on the Jaccard matrix from the LOF data,
but the moderate data case was similar.

Building the Gram matrix from the LOF data one sees
that, as we feared, the data Jaccard values are very low
and mostly zero or very close to zero (figure 11).

Looking at the LOF data, one may notice that many
values are not integers. This is due to the many mean-
inputed values in the dataset. Because of the way Jaccard
values are computed, we will get zeros even if the individ-
uals have similar (but non-integer) gene-burden values.

A natural solution is to round these values. This gives
interesting results (figure 12), although still heavily skewed
towards zero.

I spent some time zooming in and trying to understand
the origins of the non-zero peaks of the histogram.

One may realize that something odd is going on by
looking at the well-defined yellow and red squares in the

(a) Heatmap for Jaccard scores using 30820 individuals.

(b) Histogram for Jaccard scores using 30820 individuals.

Figure 12: Jaccard scores for the LOF rounded data, using
30820 individuals.
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heatmap. What are the chances that the similar indi-
viduals are all in the same region of the dataset? It’s
much more likely that these apparently interesting results
are actually an artifact of mean-imputation followed by
rounding the results: many of the individuals with close
index numbers are from the same cohort, and thus have
missing values in many of the same SNPs, so that mean-
imputation + rounding effectively turns two individuals
from the same cohort very similar under the Jaccard in-
dex.

This is the danger of using mean-inputation (with data
with many missing values and/or very rare nonzero values)
together with the Jaccard index.

5.2 Glossary

Allele: a variant form of a given gene, meaning it is one
of two or more versions of a gene. It can also refer to
a region of interest in the genome. In this last sense,
alleles can come in different extremes of size. At the lowest
possible end one can be the single base choice of a single
nucleotide polymorphism (SNP). At the higher end, it can
be the sequence variations for the regions of the genome
that code for the same protein which can be up to several
thousand base-pairs long.

Common variant : SNP variant/allele with an allele fre-
quency smaller than 0.5 in the sample (hence any minor
SNP allele is a common variant).

Deoxyribonucleic acid (DNA): is a molecule composed of
two polynucleotide chains that coil around each other to
form a double helix, being connected by hydrogen bonds
at their nucleotides. Its nucleotides are: A, T, C, G.

Gene: a sequence of nucleotides in DNA or RNA that
encodes the synthesis of a genetic product, either RNA or
protein.

Gene expression: the process by which information from a
gene is used in the synthesis of a functional gene product.
These products are often proteins, but in non-protein cod-
ing genes such as transfer RNA (tRNA) or small nuclear
RNA (snRNA) genes, the product is a functional RNA.

Genome: Sum total of an organism’s DNA.

Genome-wide association study (GWAS): observational
study of a genome-wide set of genetic variants in different
individuals to see if any of those variants are associated
with a phenotype. Typically, the variants are simply SNPs
and the phenotype is the presence or absence of a (human)
disease. In more detail: GWA studies compare the DNA
of participants with varying phenotypes for a particular
trait/disease. The cases are the individuals with the dis-
ease, and the controls are the ones without (this is the
traditional approach, called phenotype-first). The DNA
of every subject is read using snip arrays, letting us know
what allele occurs in each person. If one allele is more fre-
quent in cases than in controls, it is said to be associated

with the disease.

Nucleotides: molecules consisting of a nucleoside (five-
carbon sugar ribose + nitrognous base) and a phosphate
group. They are the basic building blocks of DNA and
RNA.

Population Structure: A population has structure when
there are large-scale systematic differences in ancestry and/or
groups of individuals with more recent shared ancestors
than one would expect in a randomly mating population.

Rare variant : SNP variant/allele with an allele frequency
smaller than 0.01 in the sample.

Variant : An alteration in the most common DNA nu-
cleotide sequence. The term variant can be used to de-
scribe an alteration that may be benign, pathogenic, or
of unknown significance. The term variant is increasingly
being used in place of the term mutation.
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